
601.443/643 – Remote DNS Cache Poisoning Attack Lab 1

Part 2: Remote DNS Cache Poisoning Attack Lab

Copyright © 2006 - 2016 Wenliang Du, Syracuse University.
Modifications by Tushar Jois for JHU 601.443/643, Security and Privacy in Computing.
The development of this document was partially funded by the National Science Foundation under Award
No. 1303306 and 1318814. This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. A human-readable summary of (and not a substitute for) the license is
the following: You are free to copy and redistribute the material in any medium or format. You must give
appropriate credit. If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original. You may not use the material for commercial purposes.

1 Lab Overview

The objective of this lab is for students to gain the first-hand experience on the remote DNS cache poisoning
attack, also called the Kaminsky DNS attack. DNS (Domain Name System) is the Internet’s phone book;
it translates hostnames to IP addresses and vice versa. This translation is through DNS resolution, which
happens behind the scene. DNS Pharming attacks manipulate this resolution process in various ways, with
an intent to misdirect users to alternative destinations, which are often malicious. This lab focuses on a
particular DNS Pharming attack technique, called DNS Cache Poisoning attack. In another SEED Lab, we
have designed activities to conduct the same attack in a local network environment, i.e., the attacker and the
victim DNS server are on the same network, where packet sniffing is possible. In this remote attack lab,
packet sniffing is not possible, so the attack becomes much more challenging than the local attack. This lab
covers the following topics:

• DNS and how it works
• DNS server setup
• DNS cache poisoning attack
• Spoofing DNS responses
• Packet sniffing and spoofing

Readings and related topics. Detailed coverage of DNS and its attacks can be found in Chapter 15 of the
SEED book, Computer Security: A Hands-on Approach, by Wenliang Du.

Lab environment. This lab has been tested on our pre-built Ubuntu 16.04 VM, which can be downloaded
from Blackboard.

2 Lab Environment

The main purpose of this lab is on DNS attacks, and our attacking target is a local DNS server. Obviously, it
is illegal to attack a real machine, so we need to set up our own DNS server to conduct the attack experiments.
The lab environment needs three separate machines: one for the victim, one for the DNS server, and the other
for the attacker. We will run these three virtual machines on one physical machine. All these VMs will run
our pre-built Ubuntu VM image. Figure 1 illustrates the setup of the experiment environment. For the VM
network setting, if you are using VirtualBox, please use "NAT Network" as the network adapter for
each VM. If you are using Vmware, the default "NAT" setting is good enough. We put all these VMs on
the same LAN only for the sake of simplicity; students are not allowed to exploit this fact in their attacks,

601.443/643 – Remote DNS Cache Poisoning Attack Lab 2

and they should treat the attacker machine as a remote machine, i.e., the attacker cannot sniff victim DNS
server’s packets.

In the following sections, we assume that the user machine’s IP address is 10.0.2.18, the local DNS
Server’s IP is 10.0.2.16 and the attacker machine’s IP is 10.0.2.17. We call the Local DNS server
Apollo in this document.

Local DNS Server
10.0.2.16

User Machine
10.0.2.18

Attacker
10.0.2.17

Figure 1: Environment setup for the experiment

2.1 Configure the Local DNS Server Apollo

For the local DNS server, we need to run a DNS server program. The most widely used DNS server software
is called BIND (Berkeley Internet Name Domain), which, as the name suggests, was originally designed at
the University of California Berkeley in the early 1980s. The latest version of BIND is BIND 9, which was
first released in 2000. We will show how to configure BIND 9 for our lab environment. The BIND 9 server
program is already installed in our pre-built Ubuntu VM image.

Step 1: Configure the BIND 9 server. BIND 9 gets its configuration from a file called /etc/bind/
named.conf. This file is the primary configuration file, and it usually contains several "include"
entries, i.e., the actual configurations are stored in those included files. One of the included files is called
/etc/bind/named.conf.options. This is where we typically set up the configuration options. Let
us first set up an option related to DNS cache by adding a dump-file entry to the options block:

options {
dump-file "/var/cache/bind/dump.db";

};

The above option specifies where the cache content should be dumped to if BIND is asked to dump its
cache. If this option is not specified, BIND dumps the cache to a default file called /var/cache/bind/
named_dump.db. The two commands shown below are related to DNS cache. The first command dumps
the content of the cache to the file specified above, and the second command clears the cache.

$ sudo rndc dumpdb -cache // Dump the cache to the sepcified file
$ sudo rndc flush // Flush the DNS cache

601.443/643 – Remote DNS Cache Poisoning Attack Lab 3

Step 2: Turn off DNSSEC. DNSSEC is introduced to protect against spoofing attacks on DNS servers.
To show how attacks work without this protection mechanism, we need to turn the protection off. This is
done by modifying the named.conf.options file: comment out the dnssec-validation entry,
and add a dnssec-enable entry.

options {
dnssec-validation auto;
dnssec-enable no;

};

Step 3: Fix the Source Ports. DNS servers now randomize the source port number in their DNS queries;
this makes the attacks much more difficult. Unfortunately, many DNS servers still use predictable source
port number. For the sake of simplicity in this lab, we assume that the source port number is a fixed number.
We can set the source port for all DNS queries to 33333. This can be done by adding the following option
to the file /etc/bind/named.conf.options:

query-source port 33333

Step 4: Remove the example.com Zone. If you did our “Local DNS Attack Lab”, you have probably
configured the local DNS server Apollo to host the example.com domain. In this lab, this DNS server
will not host that domain, so please remove its corresponding zone from /etc/bind/named.conf.

Step 5: Start DNS server. We can now start the DNS server using the following command. Every time
a modification is made to the DNS configuration, the DNS server needs to be restarted. The following
command will start or restart the BIND 9 DNS server.

$ sudo service bind9 restart

2.2 Configure the User Machine

On the user machine 10.0.2.18, we need to use 10.0.2.16 as the local DNS server (by default, the
DNS server program is already running in the SEED VM). This is achieved by changing the resolver con-
figuration file (/etc/resolv.conf) of the user machine, so the server 10.0.2.16 is added as the first
nameserver entry in the file, i.e., this server will be used as the primary DNS server. Unfortunately, our
provided VM uses the Dynamic Host Configuration Protocol (DHCP) to obtain network configuration pa-
rameters, such as IP address, local DNS server, etc. DHCP clients will overwrite the /etc/resolv.conf
file with the information provided by the DHCP server.

One way to get our information into /etc/resolv.conf without worrying about the DHCP is to
add the following entry to the /etc/resolvconf/resolv.conf.d/head file:

Add the following entry to /etc/resolvconf/resolv.conf.d/head
nameserver 10.0.2.16

Run the following command for the change to take effect
$ sudo resolvconf -u

The content of the head file will be prepended to the dynamically generated resolver configuration file.
Normally, this is just a comment line (the comment in /etc/resolv.conf comes from this head file).

601.443/643 – Remote DNS Cache Poisoning Attack Lab 4

After you finish configuring the user machine, use the dig command to get an IP address from a host-
name of your choice. From the response, please provide evidences to show that the response is indeed from
your server. If you cannot find the evidence, your setup is not successful.

3 Lab Tasks

The main objective of Pharming attacks is to redirect the user to another machine B when the user tries to
get to machine A using A’s host name. For example, assuming www.example.com is an online banking
site. When the user tries to access this site using the correct URL www.example.com, if the adversaries
can redirect the user to a malicious web site that looks very much like www.example.com, the user might
be fooled and give away his/her credentials to the attacker.

In this task, we use the domain name www.example.com as our attacking target. It should be noted
that the example.com domain name is reserved for use in documentation, not for any real company. The
authentic IP address of www.example.com is 93.184.216.34, and its name server is managed by the
Internet Corporation for Assigned Names and Numbers (ICANN). When the user runs the dig command
on this name or types the name in the browser, the user’s machine sends a DNS query to its local DNS
server, which will eventually ask for the IP address from example.com’s name server.

The goal of the attack is to launch the DNS cache poisoning attack on the local DNS server, such that
when the user runs the dig command to find out www.example.com’s IP address, the local DNS server
will end up going to the attacker’s name server ns.dnslabattacker.net to get the IP address, so the
IP address returned can be any number that is decided by the attacker. As results, the user will be led to the
attacker’s web site, instead of the authentic www.example.com.

There are two tasks in this attack: cache poisoning and result verification. In the first task, students
need to poison the DNS cache of the user’s local DNS server Apollo, such that, in Apollo’s DNS cache,
ns.dnslabattacker.net is set as the name server for the example.com domain, instead of the
domain’s registered authoritative name server. In the second task, students need to demonstrate the impact
of the attack. More specifically, they need to run the command "dig www.example.com" from the
user’s machine, and the returned result must be a fake IP address.

3.1 Task 1: Remote Cache Poisoning

In this task, the attacker sends a DNS query request to the victim DNS server (Apollo), triggering a DNS
query from Apollo. The query may go through one of the root DNS servers, the .COM DNS server, and
the final result will come back from example.com’s DNS server. This is illustrated in Figure 2. In case
that example.com’s name server information is already cached by Apollo, the query will not go through
the root or the .COM server; this is illustrated in Figure 3. In this lab, the situation depicted in Figure 3 is
more common, so we will use this figure as the basis to describe the attack mechanism.

While Apollo waits for the DNS reply from example.com’s name server, the attacker can send
forged replies to Apollo, pretending that the replies are from example.com’s name server. If the forged
replies arrive first, it will be accepted by Apollo. The attack will be successful.

If you have done our local DNS attack lab, you should realize that those attacks assume that the attacker
and the DNS server are on the same LAN, i.e., the attacker can observe the DNS query message. When the
attacker and the DNS server are not on the same LAN, the cache poisoning attack becomes more difficult.
The difficulty is mainly caused by the fact that the transaction ID in the DNS response packet must match
with that in the query packet. Because the transaction ID in the query is usually randomly generated, without
seeing the query packet, it is not easy for the attacker to know the correct ID.

601.443/643 – Remote DNS Cache Poisoning Attack Lab 5

Victim

DNS server

(Apollo)

Attacker’s DNS Server
ns.dnslabattacker.net

Attacker

(3) Answer:
Go ask .COM server

(4) Query .COM

server

(2) Query the

Root server

(5) Answer:
Go ask example.com’s

name server

(7) Answer:
www.example.com’s

IP address

(6) Query
example.com’s

name server

(1) Query: what is the

IP address of
www.example.com

(8) Answer:
www.example.com’s

IP address

.COM

DNS Server

Root

DNS Server

example.com

DNS Server

Figure 2: The complete DNS query process

Obviously, the attacker can guess the transaction ID. Since the size of the ID is only 16 bits, if the
attacker can forge K responses within the attack window (i.e. before the legitimate response arrives), the
probability of success is K over 216. Sending out hundreds of forged responses is not impractical, so it will
not take too many tries before the attacker can succeed.

However, the above hypothetical attack has overlooked the cache effect. In reality, if the attacker is not
fortunately enough to make a correct guess before the real response packet arrives, correct information will
be cached by the DNS server for a while. This caching effect makes it impossible for the attacker to forge
another response regarding the same domain name, because the DNS server will not send out another DNS
query for this domain name before the cache times out. To forge another response on the same domain
name, the attacker has to wait for another DNS query on this domain name, which means he/she has to wait
for the cache to time out. The waiting period can be hours or days.

The Kaminsky Attack. Dan Kaminsky came up with an elegant technique to defeat the caching effect [1].
With the Kaminsky attack, attackers will be able to continuously attack a DNS server on a domain name,
without the need for waiting, so attacks can succeed within a very short period of time. Details of the attacks
are described in [1, 2]. In this task, we will try this attack method. The following steps with reference to
Figure 3 outlines the attack.

1. The attacker queries the DNS Server Apollo for a non-existing name in example.com, such as
twysw.example.com, where twysw is a random name.

601.443/643 – Remote DNS Cache Poisoning Attack Lab 6

Victim

DNS server

(Apollo)

Attacker’s DNS Server
ns.dnslabattacker.net

Attacker

(1) Query: what is the

IP address of
twysw.example.com

.COM

DNS Server

Root

DNS Server

example.com

DNS Server

(3) Answer:
twysw.example.com’s

IP address

(2) Query
example.com’s

name server

(4) Answer (if attack is successful)
twysw.example.com’s IP address

with ns.dnslabattacker.net in

the Authoritative field

(3) Spoofed Answer: with
ns.dnslabattacker.net

in the Authoritative field

Figure 3: The DNS query process when example.com’s name server is cached

2. Since the mapping is unavailable in Apollo’s DNS cache, Apollo sends a DNS query to the name
server of the example.com domain.

3. While Apollo waits for the reply, the attacker floods Apollo with a stream of spoofed DNS re-
sponse, each trying a different transaction ID, hoping one is correct. In the response, not only does
the attacker provide an IP resolution for twysw.example.com, the attacker also provides an “Au-
thoritative Nameservers” record, indicating ns.dnslabattacker.net as the name server for the
example.com domain. If the spoofed response beats the actual responses and the transaction ID
matches with that in the query, Apollo will accept and cache the spoofed answer, and and thus
Apollo’s DNS cache is poisoned.

4. Even if the spoofed DNS response fails (e.g. the transaction ID does not match or it comes too late),
it does not matter, because the next time, the attacker will query a different name, so Apollo has to
send out another query, giving the attack another chance to do the spoofing attack. This effectively
defeats the caching effect.

5. If the attack succeeds, in Apollo’s DNS cache, the name server for example.com will be replaced
by the attacker’s name server ns.dnslabattacker.net. To demonstrate the success of this
attack, students need to show that such a record is in Apollo’s DNS cache. Figure 4 shows an
example of poisoned DNS cache.

601.443/643 – Remote DNS Cache Poisoning Attack Lab 7

Attack Configuration. We need to configure the attack machine, so it uses the targeted DNS server (i.e.,
Apollo) as its default DNS server. Please see Section 2.2 for the instruction. Make sure that the network
configuration for this VM is "NAT Network".

Task 1.1: Spoofing DNS request. Implementing the Kaminsky attack is quite challenging, so we break it
down into three sub-tasks. This subtask focuses on spoofing DNS requests. In order to complete the attack,
we (as attackers) need to trigger the target DNS server to send out DNS queries, so we have a chance to spoof
DNS replies. Since we need to try many times before we can succeed, we have to automate the process. The
first step is to write a program to send out DNS queries to the target DNS server, each time with a different
hostname in the question field. Your job is to write this program and demonstrate using Wireshark that your
queries can trigger the target DNS server to send out DNS queries on behalf of you.

Because we do not need to send out DNS queries very fast, we can afford to use an external program to
do that for us, instead of implementing everything in C programs. For example, you can use system() to
invoke dig:

system("dig xyz.example.net"}

First needs to send DNS queries to Apollo for some random host names in the example.com do-
main. Right after each query is sent out, the attacker needs to forge a large number of DNS response packets
in a very short time window, hoping that one of them has the correct transaction ID and it reaches the target
before the authentic response does.

Task 1.2: Spoofing DNS Replies. We need to spoof DNS replies in the Kaminsky attack. Performance is
essential for the success of the attack, so it is better to write the program in C. To make your life easier, we
have provided a sample code called spoofdns.c, which shows how to construct DNS reply packets.

1. When modifying the spoofdns.c program, you need to fill each DNS field with the correct value.
To understand the value in each field, you can use Wireshark to capture a few DNS query and
response packets.

2. Explain the code ...

Please show what kind of replies you are spoofing and explain why. You should use Wireshark to capture
your spoofed DNS replies, and show the details of some selected replies in the report.

Task 1.3: The Kaminsky Attack. Now we can put everything together to conduct the Kaminsky attack.
Launch your attack and then check the dump.db file to see whether your spoofed DNS response has been
successfully accepted by the DNS server. See an example in Figure 4.

3.2 Task 2: Result Verification

If your attack is successful, Apollo’s DNS cache will look like that in Figure ??, i.e., the NS record for
example.com becomes ns.dnslabattacker.net. To make sure that the attack is indeed successful,
we run the dig command on the user machine (see Figure ??) to ask for www.example.com’s IP address.

When Apollo receives the DNS query, it searches for example.com’s NS record in its cache, and
finds ns.dnslabattacker.net. It will therefore send a DNS query to ns.dnslabattacker.net.
However, before sending the query, it needs to know the IP address of ns.dnslabattacker.net. This
is done by issuing a separate DNS query. That is where we get into trouble.

601.443/643 – Remote DNS Cache Poisoning Attack Lab 8

Figure 4: A Sample of Successfully Poisoned DNS Cache

The domain name dnslabattacker.net does not exist in reality. We created this name for the pur-
pose of this lab. Apollo will soon find out about that, and mark the NS entry invalid, essentially recovering
from the poisoned cache. One may say that when forging the DNS response, we can use an additional record
to provide the IP address for ns.dnslabattacker.net. Unfortunately, this additional record will not
be accepted by Apollo. Please think about why and give your explanation in your lab report (hint: think
about the zones).

There are two ways to solve the problem, so we can demonstrate the impact of our success cache-
poisoning attack (the attack is indeed successful, the problem is that we cannot show it):

Use a Real Domain Name. If you own a real domain and you can configure its DNS, your job is easy.
Just use your own domain name in the NS record, instead of dnslabattacker.net. Please refer to the
setup section in our “Local DNS Attack Lab” to configure your domain’s DNS server, so it can answer the
queries for the example.com domain.

Use A Fake Domain Name. If you do not own a real domain name, you can still do the demonstra-
tion using our fake domain name ns.dnslabattacker.net. We just need to do some extra config-
uration on Apollo, so it recognizes dnslabattacker.net as a real domain. We basically add the
ns.dnslabattacker.net’s IP address to Apollo’s DNS configuration, so Apollo does not need to
go out asking for the IP address of this hostname from a non-existing domain. The instructions are provided
in the following.

601.443/643 – Remote DNS Cache Poisoning Attack Lab 9

We first configure the victim’s DNS server Apollo. Find the file named.conf.default-zones
in the /etc/bind/ folder, and add the following entry to it:

zone "ns.dnslabattacker.net" {
type master;
file "/etc/bind/db.attacker";

};

Create the file /etc/bind/db.attacker, and place the following contents in it. We let the at-
tacker’s machine and ns.dnslabattacker.net share the machine (192.168.0.200). Be aware
that the format of the following contents can be messed up in the PDF file if you copy and paste. We have
linked the file db.attacker in the lab’s web site.

$TTL 604800
@ IN SOA localhost. root.localhost. (

2; Serial
604800 ; Refresh
86400 ; Retry
2419200 ; Expire
604800) ; Negative Cache TTL;

@ IN NS ns.dnslabattacker.net.
@ IN A 192.168.0.200
@ IN AAAA ::1

Once the setup is finished, if your cache poisoning attack is successful, any DNS query sent to Apollo
for the hostnames in example.com will be sent to 192.168.0.200, which is attacker’s machine.

We need to configure the DNS server on 192.168.0.200, so it answers the queries for the domain
example.com. Add the following entry in /etc/bind/named.conf.local on 192.168.0.200:

zone "example.com" {
type master;
file "/etc/bind/example.com.db";

};

Create a file called /etc/bind/example.com.db, and fill it with the following contents. Please
do not directly copy and paste from the PDF file, as the format may be messed up. You can download the
example.com.db file from the lab’s web site.

$TTL 3D
@ IN SOA ns.example.com. admin.example.com. (

2008111001
8H
2H
4W
1D)

@ IN NS ns.dnslabattacker.net.
@ IN MX 10 mail.example.com.
www IN A 1.1.1.1
mail IN A 1.1.1.2

*.example.com IN A 1.1.1.100

601.443/643 – Remote DNS Cache Poisoning Attack Lab 10

When the configurations are finished, do not forget to restart both Apollo’s and the attacker’s DNS
servers; otherwise, the modification will not take effect. If everything is done properly, you can use the
command like "dig www.example.com on the user machine. The reply would be 1.1.1.1, which is
exactly what we put in the above file.

4 Submission

Students need to submit a detailed lab report to describe what they have done and what they have observed.
Report should include the evidences to support the observations. Evidences include packet traces, screen
dumps, etc.

Note: Please do not forget to answer the question asked in Task 2, regarding why the IP address for
ns.dnslabattacker.net in the additional field is not accepted by the victim DNS server.

This is a “lab report”, not a problem set: writing in clear, concise English is a part of the exercise (and
the grade). Make sure you describe, step-by-step, your process. We want to be able to recreate your results
by following your steps exactly. Logical leaps between steps will result in point deductions. Do not be afraid
to include issues you faced, and how you solved them. Note that you must answer all questions in paragraph
form for full credit. Look at the example report on Blackboard for an idea of what we are expecting.

When you are ready to submit your lab report for this lab, upload it to Blackboard with the follow-
ing format: lab-report-aXpY-jhed.pdf, where X is the assignment number Y is the part number,
and jhed is your JHED (email-based). For example, Tushar Jois would submit Assignment 7, Part 2 as
lab-report-a7p2-tjois1.pdf. DOCX and other formats will not be accepted.

References

[1] D. Schneider. Fresh Phish, How a recently discovered flaw in the Internet’s Domain Name Sys-
tem makes it easy for scammers to lure you to fake Web sites. IEEE Spectrum, 2008 http:
//spectrum.ieee.org/computing/software/fresh-phish

[2] Du, Wenliang. Computer Security: A Hands-on Approach. CreateSpace Independent Pub-
lishing Platform, 2017 ISBN-10: 154836794X, ISBN-13: 978-1548367947 https://www.
handsonsecurity.net/

