
Buffer Overflow Attack 1

Buffer Overflow Attack
Due September 16, 2019 at 10pm EDT to Gradescope. You must work individually on these

homeworks.

Copyright © 2017 Wenliang Du, All rights reserved.

4.1. (2 points) Please draw the function stack frame for the following C function.

int bof(char *str)
{

char buffer[24];
strcpy(buffer,str);
return 1;

}

4.2. (2 points) A student proposes to change how the stack grows. Instead of growing from
high address to low address, the student proposes to let the stack grow from low address
to high address. This way, the buffer will be allocated above the return address, so
overflowing the buffer will not be able to affect the return address. Would this prevent
buffer overflow attacks? Explain your reasoning.

4.3. (2 points) Consider the following code. Is this code vulnerable to a buffer overflow
attack? Explain your reasoning.

int bof(char *str, int size)
{

char *buffer = (char *) malloc(size);
strcpy(buffer, str);
return 1;

}

4.4. (1 point) Several students had issue with the buffer overflow attack. Their badfile was
constructed properly where shell code is at the end of badfile, but when they try differ-
ent return addresses, they get the following observations. Can you explain why some
addresses work and some do not?

buffer address : 0xbffff180
case 1 : long retAddr = 0xbffff250 -> Able to get shell access
case 2 : long retAddr = 0xbffff280 -> Able to get shell access
case 3 : long retAddr = 0xbffff300 -> Cannot get shell access
case 4 : long retAddr = 0xbffff310 -> Able to get shell access
case 5: long retAddr = 0xbffff400 -> Cannot get shell access

4.5. (3 points) The following function is called in a privileged program. The argument
str points to a string that is entirely provided by users (the size of the string is up
to 300 bytes). When this function is invoked, the address of the buffer array is
0xAABB0010, while the return address is stored in 0xAABB0050. Please write down
the string that you would feed into the program, so when this string is copied to buffer



2 Buffer Overflow Attack

and when the bof() function returns, the privileged program will run your code. In
your answer, you don’t need to write down the injected code, but the offsets of the key
elements in your string need to be correct.

Note: there is a trap in this problem; some people may be lucky and step over it, but
some people may fall into it. Be careful.

int bof(char *str)
{

char buffer[24];
strcpy(buffer,str);
return 1;

}

Address A: 0x804B2220

next

buffer

pre

p Address B: 0x804B22C0

Figure 1: Figure for Problem 4.6.

4.6. (6 points) In this problem, we will figure out how overflowing a buffer on the heap can
lead to the execution of malicious code. The following is a snippet of a code execution
sequence (not all code in this sequence is shown here). During the execution of this
sequence, the memory locations of buffer and the node p, which are allocated on
the heap, are depicted in Figure 1. You can provide your input (up to 300 bytes) in
user input, which will be copied to buffer. Your job is to overflow the buffer, so
when the target program gets to Line Ì, it will jump to the code that you have injected
into the heap memory (assuming that the heap memory is executable). The return address
is stored at location 0xBBFFAACC.

struct Node
{
struct Node *next;
struct Node *pre;

};



Buffer Overflow Attack 3

// The following is a snippet of a code execution sequence.

struct Node *p = malloc(sizeof(struct Node));
struct Node *q;
char *buffer = malloc(100);

/* Code omitted: Add Node p to a linked list */

// There is a potential buffer overflow in the following
strcpy(buffer, user_input);

// remove Node p from the linked list
q = p->pre; Ê

q->next = p->next; Ë

return; Ì

Hint: You still want to place the starting address of your malicious code into the re-
turn address field located at 0xBBFFAACC. Unlike stack-back buffer overflows, where
you can naturally reach the return address field via overflowing, now the buffer is on
the heap, but the return address is on the stack; you cannot reach the stack by overflow-
ing something on the heap. You should take advantage of the operations on the linked
list (Lines Ê and Ë) to modify the return address field.

This is a simplified version of how a buffer overflow on the heap can be exploited. The
linked list is not part of the vulnerable program; it is actually part of the operating system,
which uses it to manage the memory on the heap for the current process. Unfortunately,
the linked list is also stored on the heap, so by overflowing an application’s buffer, at-
tackers can change the values on this linked list. When the OS operates on the corrupted
linked list, it may change the return address of function, and trigger the execution of the
injected code.

4.7. (1 point) This problem is built on top of Problem 4.6. Assume that the structure for
Node becomes the following (a new integer field is addeded to the beginning). Please
redo Problem 4.6. It should be noted that in Figure 1, the variable p will now point to
the area 4 bytes below the next field.

struct Node
{
int value;
struct Node *next;
struct Node *pre;

};

4.8. (3 points) The following function is called in a remote server program. The argument
str points to a string that is entirely provided by users (the size of the string is up to 300
bytes). The size of the buffer is X, which is unknown to us (we cannot debug the remote
server program). However, somehow we know that the address of the buffer array is
0xAABBCC10, and the distance between the end of the buffer and the memory holding



4 Buffer Overflow Attack

the function’s return address is 8. Although we do not know the exact value of X, we do
know that its range is between 20 and 100.

Please write down the string that you would feed into the program, so when this string
is copied to buffer and when the bof() function returns, the server program will run
your code. You only have one chance, so you need to construct the string in a way such
that you can succeed without knowing the exactly value of X. In your answer, you don’t
need to write down the injected code, but the offsets of the key elements in your string
need to be correct.

int bof(char *str)
{

char buffer[X];
strcpy(buffer,str);
return 1;

}


