
BlockSci: Design and applications of a blockchain analysis platform

Harry Kalodner

kalodner@cs.princeton.edu

Princeton University

Steven Goldfeder

stevenag@cs.princeton.edu

Princeton University

Alishah Chator

alishahc@cs.jhu.edu

Johns Hopkins University

Malte Möser

mmoeser@cs.princeton.edu

Princeton University

Arvind Narayanan

arvindn@cs.princeton.edu

Princeton University

ABSTRACT
Analysis of blockchain data is useful for both scienti�c research

and commercial applications. We present BlockSci, an open-source

software platform for blockchain analysis. BlockSci is versatile in

its support for di�erent blockchains and analysis tasks. It incorpo-

rates an in-memory, analytical (rather than transactional) database,

making it several hundred times faster than existing tools. We

describe BlockSci’s design and present four analyses that illustrate

its capabilities.

This is a working paper that accompanies the �rst public release

of BlockSci, available at github.com/citp/BlockSci. We seek input

from the community to further develop the software and explore

other potential applications.

1 INTRODUCTION
Public blockchains constitute an unprecedented research corpus of

�nancial transactions. Bitcoin’s blockchain alone is 140 GB as of

August 2017, and growing quickly. This data holds the key to mea-

suring the privacy of cryptocurrencies in practice [1, 2], studying

new kinds of markets that have emerged [3, 4], and understanding

the non-currency applications that use the blockchain as a database.

We present BlockSci, a software platform that enables the sci-

ence of blockchains. It addresses three pain points of existing tools:

poor performance, limited capabilities, and a cumbersome program-

ming interface. BlockSci is 15x–600x faster than existing tools,

comes bundled with analytic modules such as address clustering,

exposes di�erent blockchains through a common interface, imports

exchange rate data and “mempool” data, and gives the programmer

a choice of interfaces: a Jupyter notebook for intuitive exploration

and C++ for performance-critical tasks.

BlockSci’s design starts with the observation that blockchains

are append-only databases; further, the snapshots used for research

are static. Thus, the ACID properties of transactional databases

are unnecessary. This makes an in-memory analytical database the

natural choice. On top of the obvious speed gains of memory, we

apply a number of tricks such as converting hash pointers to actual

pointers, which further greatly increase speed and decrease the size

of the data. We plan to scale vertically as blockchains grow, and we

expect that this will be straightforward for the foreseeable future,

as commodity cloud instances currently o�er up to a hundred times
more memory than required for loading and analyzing Bitcoin’s

blockchain. Avoiding distributed processing is further motivated

by the fact that blockchain data is graph-structured, and thus hard

to partition e�ectively. In fact, we conjecture that the use of a tra-

ditional, distributed transactional database for blockchain analysis

has in�nite COST [5], in the sense that no level of parallelism can

outperform an optimized single-threaded implementation.

BlockSci comes with batteries included. First, it is not limited

to Bitcoin: a parsing step converts a variety of blockchains into

a common, compact format. Currently supported blockchains in-

clude Bitcoin, Litecoin, Namecoin, and Zcash (Section 2.1). Smart

contract platforms such as Ethereum are outside our scope. Second,

BlockSci includes a library of useful analytic and visualization tools,

such as identifying special transactions (e.g., CoinJoin) and linking

addresses to each other based on well-known heuristics (Section

2.4). Third, we record transactions broadcast on the peer-to-peer

network and expose them through the same interface. Similarly, we

expose (historical and current) data on the exchange rates between

cryptocurrencies and �at currencies. These allow many types of

analyses that wouldn’t be possible with blockchain data alone.

The analyst begins exploring the blockchain through a Jupyter

notebook interface (Section 2.5), which initially exposes a chain
object, representing the entire blockchain. Startup is instantaneous

because transaction objects are not initially instantiated, but only

when accessed. Iterating over blocks and transactions is straight-

forward, as illustrated by the following query, which computes the

average fee paid by transactions in each block mined in July 2017:

fees = [mean(tx.fee() for tx in block) for

block in chain.range('Jul 2017')]

This interface is suitable for exploration, but for analyses requir-

ing high performance, BlockSci also has a C++ interface. For many

tasks, most of the code can be written in Python with a snippet of

performance-sensitive code written as inline C++ (Section 2.5).

In Section 3 we present four applications to illustrate the capa-

bilities of BlockSci. First, we show how multisignatures have the

unfortunate e�ect of weakening con�dentiality by exposing the

details of access control on the blockchain, as suggested by Gennaro

et al. [6]; multisignatures even hurt the privacy of users who do not
use them (Section 3.1). Next, we provide evidence that the cluster

intersection attack reported recently [1] also works against Dash,

a prominent privacy-focused altcoin with built-in mixing (Section

3.2). Turning to economics, we analyze the emerging market for

block space, and identify behaviors by miners that result in forego-

ing signi�cant transaction fees (3.3). Finally, we provide improved

estimates of the velocity of cryptocurrencies, i.e., the frequency

with which coins change possession. This helps us understand their

use as a store of value versus a medium of exchange.

ar
X

iv
:1

70
9.

02
48

9v
1 

 [
cs

.C
R

] 
 8

 S
ep

 2
01

7

https://github.com/citp/BlockSci


Figure 1: Overview of BlockSci’s architecture.

2 DESIGN AND ARCHITECTURE
Overview. Figure 1 shows an overview of BlockSci’s architecture.

There are two routes for importing data into BlockSci (Section

2.1). Through either route, the data is converted into the same

intermediate format for parsing (Section 2.2). The parser produces

the Core Blockchain Data (Section 2.3), which can be incrementally

updated as new blocks come in. The analysis library (Section 2.4)

loads this data as an in-memory database, which the user can either

query directly or through a Jupyter notebook interface (Section

2.5).

2.1 Recording and importing data
Supported blockchains. Recall that the Bitcoin blockchain con-

sists primarily of a directed acyclic graph of transactions. The edges

connecting transactions have attributes, i.e., addresses or scripts,

attached to them. Transactions are grouped into blocks which are

arranged in a linear chain, with a small amount of metadata per

block. BlockSci supports blockchains that follow this basic struc-

ture. For example, Litecoin makes no changes to the data structure,

and is thus fully supported.

Cryptocurrencies that introduce changes to the script operations

may be supported only partially. Namecoin is supported, but the

new script types it introduces are not parsed by BlockSci (the user

can parse them with a few lines of code). Zcash is also supported, at

least to the extent that Zcash blockchain analysis is even possible:

it introduces a complex script that includes zero-knowledge proofs,

but these aspects are parceled away in a special type of address

that is not publicly legible by design.

An example of a currently unsupported blockchain is Monero

because it doesn’t follow the “one-input, one-output” paradigm.

In other words, the transaction graph contains an additional type

of node, the mixin. Supporting such blockchains would require

changes to the internal logic as well as the programmer interface.

Similarly, Ethereum departs from the transaction-graph model, and

further, its script is vastly di�erent from and more complex than

Bitcoin’s.

In our analyses we have worked with six blockchains: Bitcoin,
1

Bitcoin Cash, Litecoin, Namecoin, Dash, and ZCash. Many other

cryptocurrencies make no changes to the blockchain format, and

so should be supported with no changes to BlockSci.

Importer. For altcoins with small blockchains where import

performance is not a concern, we use the JSON-RPC interface that

is supported by most altcoins. The advantage of this approach

is versatility, as altcoins generally aim to conform to a standard

JSON-RPC schema regardless of the on-disk data structures and

serialization format. For larger blockchains (currently only Bitcoin

is large enough for import performance to be a concern), we use

our own high-performance importer that directly reads from the

raw data on disk. Our Bitcoin importer also works on Litecoin and

Dash as they use the same format.

The importer doesn’t save data to disk; rather it passes data di-

rectly to the parser (Section 2.2), and the two execute in a pipelined

fashion.

Mempool recorder. BlockSci also records mempool data, that

is, information about transactions that are broadcast to the P2P

network and are waiting to be included in the blockchain. The

waiting time of transactions provides valuable data about the block

space market (and isn’t recorded in the blockchain itself). Similarly,

transactions that never make it into the blockchain are valuable for

analysis.

The mempool recorder has two modes. In minimal mode, it

records only timestamps (equivalently, waiting times) of transac-

tions that made it into the blockchain. Note that public sources of

mempool data such as blockchain.info allow querying the times-

tamp by transaction hash, but not the bulk download of this data.

In full mode, the recorder includes all information in the mempool,

which encompasses transactions that were never included in a

block. Timestamp data is loaded in memory for analysis whereas

the full-mode data is stored on disk.

1
SegWit support is not yet included, but is planned shortly.

2



Description Size

Spent/spending tx ID 32 bits

Address ID 32 bits

Value 60 bits

Address Type 4 bits

Table 1: Input/output
structure

Description Size

Size 32 bits

Locktime 32 bits

Input count 16 bits

Output count 16 bits

Outputs 128 bits each

Inputs 128 bits each

Table 2: Transaction struc-
ture

In any peer-to-peer system, di�erent nodes will receive the

same data at di�erent times. Blockchain.info uses a geographi-

cally distributed set of nodes to obtain relatively accurate times-

tamps. BlockSci is a single-node system, so its timestamps in-

evitably lag those of blockchain.info. Based on 2 weeks of mempool

data recorded by our AWS node in the us-east-1d data center, we

found that our timestamps lag blockchain.info’s timestamps by

an average of 16 seconds and a standard deviation of 4 seconds.

Any BlockSci user can perform a similar measurement and apply a

uniform correction to eliminate the average lag, but of course the

variance will remain.

2.2 Parser
The on-disk format of blockchains is highly ine�cient for our pur-

poses. It is optimized for a di�erent set of goals such as validating

transactions and ensuring immutability. Bitcoin Core and other

such clients minimize memory consumption at the expense of disk

space, whereas we aim for a single representation of the data that

can �t in memory. A number of techniques help achieve this goal

while simultaneously optimizing for speed of access:

(1) Link outputs to the inputs that spend them in order to

allow e�cient graph traversal.

(2) Replace hash pointers with IDs to shrink the data structure

and optimize linkage.

(3) Use �xed size encodings for data �elds whenever possible.

(4) De-duplicate address/script data.

(5) Optimize the memory layout for locality of reference.

Parsing is sequential and stateful. The blockchain must be

processed sequentially because two types of state are required to

transform the blockchain into the BlockSci analysis format. Each

transaction input speci�es which output it spends, encoded as

(transaction hash, output index). To transform the transaction hash

into the ID that BlockSci assigns to the transaction, the parser must

maintain the hash→ ID map. Similarly, it must maintain a mapping

from addresses to IDs for linking and deduplication.

The transaction hash→ ID map can be made smaller by pruning

transaction hashes for which all the outputs of the transaction have

been spent. Address mapping, however, allows no such optimiza-

tion. Any address may be used by any output and thus all addresses

must be tracked at all times. Storing the map in memory would

require too much memory, and storing it on disk would make the

parser too slow.

Optimization: LRU Cache and Bloom �lter. To achieve fur-

ther optimizations, we observe that the vast majority of inputs

spend recently created outputs (e.g., 89% of inputs spend outputs

created in the last 4000 blocks). Similarly, the vast majority of ad-

dresses that are ever used again are used soon after their initial

usage (e.g., 90% within 4000 blocks).

This allows the following trade-o� between speed and memory

consumption:

• The transaction and addresses hashes are stored in a key-

value database on disk (LevelDB), with a memory cache

that has a Least Recently Used replacement policy. The

cache also contains (and does not evict) all addresses that

have been used multiple times, which is a small fraction of

addresses (6.8%).

• A bloom �lter stores the list of seen addresses. If an address

is not in the cache, the bloom �lter is queried before the

database. Recall that negative results from a bloom �lter

are always correct, whereas there is a small chance of false

positives. This ensures correctness of the lookup while

minimizing the number of database queries for nonexistent

addresses.

Another optimization is that since the parser takes as input the

serialized blockchain, we assume that transactions and blocks have

been validated by the peer-to-peer node before being saved. This

allows us to forgo the vast majority of script processing.

IncrementalUpdates: The append-only nature of the blockchain

enables incremental updates to the parser output. The parser se-

rializes its �nal state at the end of a run and resumes from that

state when invoked again. The main di�culty with this approach

is handling blockchain reorganization which occurs when a block

that was originally in the longest branch is surpassed by a di�erent

branch. This requires reversing the parser process on the previous

blocks before applying the new ones (see also the discussion of the

snapshot illusion in Section 2.4).

2.3 Core Blockchain Data
The output of the parser is the Core Blockchain data, which is the

primary dataset for analysis.

Transaction graph. The transaction graph is stored in a single

sequential table of transactions, with entries having the structure

shown in Table 2. Note that entries have variable lengths, due to

the variable number of inputs and outputs (there is a separate array

of o�sets for indexing, due to the variable entry lengths). Normally

this would necessitate entries to be allocated in the heap, rather

than contiguously, which would have worse memory consumption

and worse locality of reference.

However, because of the append-only property of the blockchain,

there are only two types of modi�cations that are made to the

transactions table: appending entries (due to new transactions) and

length-preserving edits to existing entries (when existing outputs

are consumed by new transactions). This allows us to create a table

that is stored as �at �le on disk that grows linearly as new blocks

are created. To load the �le for analysis, it is mapped into memory.

The on-disk representation continues to grow (and be modi�ed in

place), but the analysis library provides a static view (Section 2.4).

Layout and locality. The main advantage of the transaction

graph layout is spatial locality of reference. Analyses that iter-

ate over transactions block-by-block exhibit strong locality and

3



bene�t from caching. Such analyses will remain feasible even on

machines with insu�cient memory to load the entire transaction

graph, because disk access will be sequential.

The layout stores both inputs and outputs as part of a transaction,

resulting in a small amount of duplication (a space cost of about

19%), but resulting in a roughly 10x speedup for sequential iteration

compared to a normalized layout. Variants of the layout are possible

depending on the types of iteration for which we wish to optimize

performance (Section 2.6).

Indexes. The transaction graph data structure does not include

transaction hashes or addresses. The mapping from transaction/ad-

dress IDs to hashes (and vice versa) is stored in separate indexes.

Accessing these indexes is almost never performance critical in sci-

enti�c analysis — in fact, many analyses don’t require the indexes

at all. Due to the size of the �les (25 GB for the transaction index

and 29 GB for the address index for the current Bitcoin blockchain),

users may not want to load them in memory for analyses where

they are not performance critical. Thus, we store them in a SQLite

database. SQLite has a command-line parameter that allows con�g-

uring the amount of memory used for caching. Currently these are

the only indexes in BlockSci. Other indexes on attributes such as

transaction fees are planned for the future.

Scripts. BlockSci currently categorizes scripts into 5 types: pay-

to-public-key-hash, pay-to-script-hash, multisig, pubkey, and null

data (OP_RETURN). All other scripts are categorized as nonstan-

dard. We plan to add support for more script types, including those

found in altcoins but not Bitcoin. For scripts belonging to any of

the supported types, BlockSci parses the script and stores informa-

tion relevant to analysis, while discarding unnecessary script data.

For pubkey and pay-to-public-key-hash this means that we record

the pubkeyhash and pubkey when available (i.e., if the output has

been spent). For pay-to-script-hash we record the script hash as

well as a reference to the address it contains (recursively one of

the types de�ned above). For multisig we record pointers to the

pubkey addresses that can spend the multisig as well as the number

of addresses required to spend it. For null data we record the data

store. For nonstandard types we record the entire script, allowing

the user to write their own parsing code as necessary.

2.4 BlockSci Analysis Library
Memory mapping and parallelism. Since BlockSci uses the

same format for the transaction graph on disk and in memory,

loading the blockchain simply involves memory-mapping this �le.

Once in memory, each transaction in the table can be accessed as a

C++ struct; no new memory needs to be allocated to enable an

objected-oriented interface to the data.

Another bene�t of memory mapping is that it allows parallel

processing with no additional e�ort, via a multithreaded or multi-

process architecture. Recall that if a �le is mapped into memory by

multiple processes, they use the same physical memory for the �le.

The �le has only one writer (the parser); it is not modi�ed by the

analysis library. Thus, synchronization between di�erent analysis

instances isn’t necessary. With a disk-based database, analyses

tend to be I/O-bound, with little or no bene�t from multiple CPUs,

whereas BlockSci is CPU-bound, and speed is proportional to the

number of CPUs used (Section 2.6). Memory mapping also makes

it straightforward to support multiple users on a single machine,

which is especially useful given that Jupyter notebook (the main

interface to BlockSci) can be exposed via the web.

The snapshot illusion. The following three seemingly contra-

dictory properties hold in BlockSci:

(1) The transactions table is constantly updated on disk as new

blocks are received (note that arbitrarily old transactions

may be updated if they have unspent outputs that get spent

in new blocks)

(2) The table is memory-mapped and shared between all run-

ning instances of BlockSci

(3) Each instance loads a snapshot of the blockchain that never

changes unless the programmer explicitly invokes a reload.

The contradiction disappears once we notice that the state of

the transactions table at any past point in time (block height) can

be reconstructed given the current state. To provide the illusion

of a static data structure, when the blockchain object is initialized,

the maxHeight attribute stores the height of the blockchain at ini-

tialization time. The blockchain height on disk increases over time,

but the maxHeight attribute remains �xed, and accesses to blocks

past this height are not possible. The analysis library intercepts

accesses to transaction outputs, and rewrites them so that outputs

that were spent in blocks after maxHeight are treated as unspent.

BlockSci currently exposes only the longest chain and hides or-

phaned/stale blocks. The library seeks to ensure that when the

user reloads the chain, it will be a superset of the previous snap-

shot; in other words, it aims to hide reorganizations (reorgs) of the

blockchain. This is done by ignoring the most recent few blocks

during initialization. The probability of a reorg that a�ects d or

more blocks decreases exponentially ind . The default value of d is 6.

If a deeper reorg happens, the analysis library throws an exception.

Mapreduce. Many analysis tasks, such as computing the av-

erage transaction fee over time, can be expressed as mapreduce

operations over the transactions table (or ranges of blocks). Thus

the analysis library supports a mapreduce abstraction. An addi-

tional advantage is parallelism: with no additional e�ort from the

programmer, the library handles parallelizing the task to utilize

all available cores. As we show in Section 2.6.1, iterating over all

transactions, transaction inputs, and transaction outputs on the

Bitcoin blockchain as of August 2017 takes only 10.3 seconds on a

single 4-core EC2 instance.

Address linking. Recall that cryptocurrency users can trivially

generate new addresses, and most wallets take advantage of this

ability. Nevertheless, addresses controlled by the same user or entity

may be linked to each other, albeit imperfectly, through various

heuristics. Address linking is a key step in analytic tasks including

understanding trends over time and evaluating privacy.

Meiklejohn et al. proposed two address-linking heuristics [7]:

(1) inputs spent to the same transaction are controlled by the same

entity and (2) change addresses are not reused. We add an exception

to heuristic 1: it isn’t applicable to CoinJoin transactions. This

requires accurately detecting CoinJoin transactions; we use the

algorithm described in Goldfeder at al. [1].

These heuristics create links (edges) in a graph of addresses. By

iterating over all transactions and applying the union-�nd algo-

rithm on the address graph, we can generate clusters of addresses.

4



Figure 2: Distribution of sizes of address clusters in Bitcoin
after applying address-linking heuristics. Sizes 1–2,000 are
shownhere but there aremany clusters that aremuch larger.

This set of clusters is the output of address linking. We use the

union-�nd implementation by Jakob [8].

Figure 2 shows the distribution of cluster sizes. There are about

145 million clusters in total, of which about 122 million are single

addresses, and about 20 million have between 2 and 20,000 addresses.

There are 13 clusters with over 20,000 addresses, including one

supercluster with over 139 million addresses.

Address linking is inherently imperfect, and ground truth is dif-

�cult to obtain on a large scale, since it requires interacting with

service providers. Many other heuristics are possible, including

those that account for the behavior of speci�c wallets. We do

not attempt to be comprehensive, resulting in false negatives (i.e.,

missed edges, resulting in more clusters than truly exist). More

perniciously, most of the heuristics are also subject to false nega-

tives (i.e., spurious edges), which can lead to “cluster collapse”. In

particular, it is likely that the supercluster above is a result of such

a collapse.

Considering the evolving nature of address linking techniques,

and considering that di�erent sets of heuristics may be suited to

di�erent applications, we provide an easy way for the programmer

to recompute address clusters using their own set of heuristics. We

conjecture that spectral clustering techniques [9] can minimize false

positives and negatives and largely obviate the need for tediously

compiled manual heuristics. This is a topic for future work.

Tagging. Address linking is especially powerful when com-

bined with address tagging, i.e., labeling addresses with real-world

identities. This can be useful for forensics and law-enforcement

investigations but it can also violate user privacy. BlockSci does

not provide address tags. Tagging requires interacting with service

providers and cannot be done in an automated way on a large scale.

Companies such as Chainalysis and Elliptic specialize in tagging

and forensics, and blockchain.info allows users to publicly tag ad-

dresses that they control. BlockSci has a limited tagging feature: if

the user provides tags for a subset of addresses, the address-linking

algorithm will propagate those tags during the address linking step.

2013 2014 2015 2016 2017
1000

10000

100000

US
D

Figure 3: Bitcoin transactions with fees worth over USD
1,000 at the time of the transaction. Note the log scale.

2.5 Programmer interface
Jupyter notebook is a popular Python interface for data science. It

allows packaging together code, visualization, and documentation,

enabling easy sharing and reproducibility of scienti�c �ndings. We

expose the C++ BlockSci library to Python through the Pybind11

interface. While we intend Jupyter notebook to be the main inter-

face to BlockSci, it is straightforward to utilize the analysis library

directly from standalone C++ or Python programs and derive most

of the bene�ts of BlockSci. Bindings for other languages may be

added in the future.

Python is not a language known for performance; unsurprisingly,

we �nd that it is signi�cantly slower to run queries through the

Python interface. Nevertheless, our goal is to allow the programmer

to spend most of their time interacting with the Jupyter notebook,

while simultaneously ensuring that the bottleneck parts of queries

execute as C++ code. This is a di�cult tradeo�, and is a work in

progress. We illustrate this through an example.

Suppose our goal is to �nd transactions with anomalously high

transaction fees — say 0.1 bitcoins (10
7

satoshis), worth several

hundred US dollars at the time of writing. The slowest way to do

this would be to write the entire query in Python:

[tx for block in chain for tx in block if

sum(txin.value for txin in tx.txins) -

sum(txout.value for txout in tx.txouts)

> 1e7]

This way does not result in acceptable performance. However,

there is a simple way to improve both performance and conciseness:

[tx for block in chain for tx in block if

tx.fee() > 1e7]

A variant of this syntax automatically enables multithreading:

chain.filter_tx(lambda tx: tx.fee() > 1e7)

tx.fee() is just one of many helper functions exposed by the

Python library that execute as C++. Another such function is

block.total_out() which returns the total output value of trans-

actions in the block. We’ve found that most of the analyses dis-

cussed in Section 3 can bene�t from a small number of such helper

functions.

Another common paradigm is a selector. A small snippet of

inline C++ code can be invoked through the notebook to return a

5



Iterating over Single Threaded Multithreaded

Transaction headers 13.1 sec 3.2 sec

Transaction outputs 27.9 sec 6.6 sec

Transaction inputs & outputs 46.4 sec 10.3 sec

Headers in random order 303.0 sec Unsupported

Table 3: BlockSci C++ running time for various queries iter-
ating over 478,449 blocks.

subset of transactions (support for a declarative syntax rather than

C++ code is planned for the near future). This subset of interest

can then be processed in Python. The selector paradigm is a good

�t for the anomalous-fee query:

chain.cpp.filter_tx("tx.fee() > 10000000")

Here chain.cpp encapsulates a set of functions that pass C++

code to the analysis library. This is the fastest way to write this

query from the Python interface. We provide performance �gures

for all the above syntaxes in Section 2.6.1.

Incidentally, the highest transaction fee that has ever been paid

is 291 BTC. On April 26, 2016, the creator of a transaction famously

and accidentally swapped the value and the fee, losing the equiva-

lent of USD 136,000 at the time. In fact, there are 300 transactions

with a fee over 1000 USD. We visualize these in Figure 3.

2.6 Performance evaluation
We now report the speed and memory consumption of BlockSci. A

few notes on the setup:

• All measurements were performed on a single EC2 instance

(8 vCPUs, 2.5 GHz, Intel Xeon E5-2670v2, 61 GiB memory,

1 x 160 GiB Storage Capacity). The cost is 66 US cents per

hour.

• All measurements assume that the in-memory data struc-

tures are already loaded in memory. This takes about 60

seconds and needs to be done only once per boot.

• By default all measurements are for the C++ interface; we

report the performance of the Python interface separately.

• By default all measurements are performed on the Bitcoin

blockchain as of August 2017 (block count 478,559).

2.6.1 Basic run time statistics

The most common type of access is a mapreduce-style iteration

over the blockchain. A representative example is �nding trans-

actions with anomalously high fees, because computing the fee

requires iterating over not just transactions, but also the inputs

and outputs of each transaction. In essence, this query touches the

entirety of the transactions table data. As Table 3 shows, a single-
threaded implementation of this query completes in 46 seconds.

Mapreduce-style queries are embarrassingly parallel, as seen in the

table. Our test machine has 8 virtual cores, i.e., 4 physical cores

with hyperthreading. The maximum possible speedup achievable

is slightly over 4x, and this speedup is achieved.

The table shows that iterating over only the outputs (e.g., �nding

the max output value) is faster, and iterating over only the headers

Query type Single threaded Multithreaded

Pure python 11 hrs 2.8 hrs

Using C++ builtin 32 min 14 min

Using C++ selector 47 sec 11.4 sec

Table 4: BlockSci Python running time for the anomalous-
fee query iterating over 478,559 blocks under the three
paradigms discussed in Section 2.5.

(e.g., �nding transactions with a given value of nLockTime) is faster

still.

The above queries bene�t from locality of reference. Other

queries, especially those involving graph traversal, will not. To

simulate this, we recomputed the query that examines transaction

headers, this time iterating over the transactions in random order.

We see that there is a 23-fold slowdown.

In Section 2.5 we presented several paradigms for querying the

blockchain from the Python interface: pure Python, C++ helper

functions, and C++ selector. Figure 4 shows the performance of

these three paradigms on the anomalous-fee query. We see that

the pure-Python method has unacceptable performance, the helper

method is faster but still slow, and the C++ selector method is

(unsurprisingly) essentially as fast as running the query in C++.

2.6.2 Comparison with previous tools

In comparing BlockSci with previous tools (some of which are

special-purpose blockchain analysis tools, and others are databases

that have been used for blockchain analysis) we have attempted to

make the comparisons as fair as possible. We have used the same

hardware when possible, and we always use benchmark tests that

were used by the authors of the respective tools. A perfectly fair

comparison may not always be possible; the main import of this

section is that BlockSci is generally orders of magnitude faster than

these tools.

Rubin presents BTCSpark [10], a distributed blockchain analysis

platform based on Apache Spark. A performance benchmark re-

ported in the paper is the “TOAD” query, for Total Output Amount

Distribution. With 10 EC2 instances, all m3.large (6.5 ECUs, 2 vC-

PUs, 2.5 GHz, Intel Xeon E5-2670v2, 7.5 GiB memory, 1 x 32 GiB

Storage), BTCSpark takes 3.7 minutes to execute TOAD on a block

count of around 390,000. On our test EC2 instance, BlockSci exe-

cutes this query in 28.3 seconds. The dollar cost of this query is 15x

lower for BlockSci than for BTCSpark with this con�guration. The

run time of BTCSpark appears to taper o� at around 10 instances;

thus, BlockSci on a single instance is likely signi�cantly faster than

BTCSpark with any number of instances.

Möser and Böhme used the Neo4j graph database for processing

the Bitcoin blockchain [3, 4]. We obtained their Neo4j database

(which included blocks up to height 419,094) and instantiated it

on our test instance. Neo4j supports a declarative graph query

language, Cypher, as well as a Java API that compiles to low-level

code. We implemented all three of the analyses reported in Table 3

via the Java API, as it is signi�cantly faster. We obtained running

times of 53 seconds, 2,300 seconds and 3,700 seconds respectively

for the three queries. Since the Neo4j implementation is I/O-bound,

6



Growth (bytes) Current

Current 20Ntx + 16Nin + 16Nout 25.21 GB

Normalized 20Ntx + 8Nin + 16Nout 20.34 GB

64-bit 20Ntx + 24Nin + 24Nout 35.39 GB

Fee Cached 30Ntx + 16Nin + 16Nout 27.6 GB

Table 5: Size of the transaction graph under each of 4 possi-
ble memory layouts. The ‘Current’ column refers to the Bit-
coin blockchain as of the end of July 2017, which has about
243 million (nodes) transactions and 663 million edges (out-
puts, including unspent ones).

parallelization on a single instance isn’t possible. For the same

block height, BlockSci executes these queries in 2.0 seconds, 3.9

seconds, and 6.0 seconds respectively in multithreaded mode. Thus,

on a single instance, BlockSci is 27x–600x faster.

The parsing tool BlockParser [11] is often used as an analysis

tool as well, and explicitly supports this functionality by provid-

ing hooks for the programmer to insert analysis code that can be

called while parsing. It comes with the “Simple Stats” benchmark

(computing average input count, average output count, and average

value). On our test instance, Blockparser takes 1,190 seconds to

execute this query. BlockParser is single-threaded, and would be

di�culty to parallelize due to the statefulness of parsing. With

BlockSci, the single-threaded implementation runs in 30.9 seconds

and the multithreaded implementation in 9.1 seconds, a 39x–131x

speedup.

Finally, Bartoletti et al. present a Scala-based blockchain analysis

library [12]. A direct performance comparison is di�cult, since

their framework requires a time-consuming step to create queries

(requiring up to tens of hours), followed by a faster query execu-

tion step. Of their 5 benchmarks, the fastest query (“OP_RETURN

metadata”) requires 2 hours to create and 0.5 seconds to execute.

BlockSci executes this in 7.5 seconds, slower than their query exe-

cution time but 960x faster than their query creation time. Another

query, “transaction fees”, requires a creation time of 35 hours and

executes in 448 seconds. BlockSci completes this query in 30.2 sec-

onds, 4172x faster than their query execution time and 14x faster

than their query creation time.

Bartoletti et al. carry out their experiments on a PC with a quad-

core Intel Core i5-4440 CPU @ 3.10GHz, equipped with 32GB of

RAM and 2TB of hard disk storage. This is less memory than our

test instance, but a more powerful CPU and far more storage.

We note that while workloads such as blockchain statistics sites

(e.g., https://blockchain.info/charts) might consist of running the

same set of queries at regular intervals, scienti�c workloads are

characterized by a diversity of queries, and hence e�ective research

tools must avoid large creation times for new queries.

2.6.3 Parser performance

Parsing the blockchain needs to be done only once upon installation;

incremental updates are essentially instantaneous. We con�gured

the parser with an 8 GB cache; this resulted in a run time of 11

Application M

a
p
r
e
d
u
c
e
q
u
e
r
ie

s

A
d
d
r
e
s
s
li
n
k
a
g
e

S
c
r
ip

t
p
a
r
s
in

g

M

e
m

p
o
o
l
d
a
ta

E
x
c
h
a
n
g
e
r
a
te

d
a
ta

A
lt
c
o
in

s
u
p
p
o
r
t

Multisig (Sec. 3.1) • • •
Dash privacy (Sec. 3.2) • ◦ •
Block space (Sec. 3.3) • • •
Velocity (Sec. 3.4) • • • •

Table 6: Usage of BlockSci features and data sources in vari-
ous analyses. Note: the address-linkage algorithmneeded to
be reimplemented for Dash due to di�erences in transaction
structure.

hours. Faster performance is possible with a larger cache. Note

that Bitcoin Core takes several hours to download the blockchain,

so initialization is slow anyway. In the future we plan to distribute

the Core Blockchain Data (serialized using Protocol Bu�ers) with

regular incremental updates, so that BlockSci users can avoid a

time-consuming initialization step, or even having to run a P2P

node at all, unless the analysis task requires mempool data.

2.6.4 Memory

Table 5 shows the memory consumption of BlockSci as a function of

the size of the blockchain (measured by the number of transactions,

inputs, outputs, and addresses). As noted earlier, for all analysis

tasks we have encountered so far, only the transaction table needs

to be in memory to ensure optimal performance. As of August 2017,

this comes out to 22 GB for Bitcoin.

Recall that BlockSci’s default layout of the transaction table is

not normalized: coins are stored once as inputs and once as outputs.

The table also shows the memory consumption for several alternate

layouts. Although normalizing the layout would save 21% space, it

leads to a steep drop in performance for typical queries such as max-

fee. Alternatively, we could store derived data about transactions,

such as the fee, at the expense of space. Finally, we also show how

the space consumption would increase if and when we need to

transition to 64-bit integers for storing transaction and address IDs.

3 APPLICATIONS
We now present four analyses that highlight BlockSci’s e�ective-

ness at supporting blockchain science. The �rst two relate to pri-

vacy and con�dentiality, and the latter two relate to the economics

of cryptocurrencies. Table 6 shows how these applications take

advantage of the features of BlockSci’s analysis library and data

sources.

3.1 Multisignatures hurt con�dentiality
Security conscious users or companies that store large amounts of

cryptocurrency often make use of Bitcoin’s multisignature capabil-

ity. Unlike standard pay-to-public-key-hash (P2PKH) transactions

which only require one signature to sign, multisig addresses al-

low one to specify n keys and a parameter m ≤ n such that m of

the speci�ed keys need to sign in order to spend the money. This

7

https://blockchain.info/charts


Figure 4: Frequency and value of multisig transactions
that expose con�dential information about access structure
changes on the blockchain.

feature makes it possible to distribute control of a Bitcoin wallet:

keys can be stored on n servers or by n di�erent employees of a

company such that m of them must agree to authorize a transac-

tion. A typical example of this would be for a user to keep a key

on both her desktop computer and her smartphone and require

the participation of both to authorize a transaction (a 2-out-of-2

multisig). Almost always with multisig scripts, pay-to-script-hash

(P2SH) transactions are used, which is a transaction type in which

the address to which the money is sent is a hash of the redeem

script. As of August 2017, about 13% of all bitcoins are held in

multisig addresses.

In this section we show how multisignatures expose con�dential

information about access control on the blockchain, as suggested by

Gennaro et al [6]. We further show how the use of multisignatures

can hurt the privacy of other users. Finally, we �nd patterns of

multisig usage that substantially reduce its security bene�ts.

Con�dentiality. For companies or individuals that use multisig

to enforce access control over their wallet, multisig publicly exposes

the access control structure as well as changes to that structure. In

other words, it exposes the number of total keys and the number of

keys needed to sign, as well as events that might trigger a change

in access control such as a loss of a device or a departure of an

employee.

Two characteristics indicate that a transaction might represent

a change in access control:

• Single input, single output. Payment transactions typically

involve multiple inputs and/or change outputs. By contrast,

a transaction with only one input and one output (whether

a regular or a multisig address) suggests that both are

controlled by the same entity.

• Overlapping sets of multisig keys between the input and

the output, which suggests a change in access control but

not a complete transfer of control.

Figure 5: A user pays a merchant that uses a multisignature
(P2SH) address. It is easy to identify the change address be-
cause regular addresses look di�erent from P2SH addresses.

Figure 6: Frequency and value of transactions that weaken
multisig security by temporarily sending coins to regular ad-
dresses, advertising the presence of a single point of failure.

As an example of such a transaction with these characteristics,

consider the transaction 96d95e...
2
. In this transaction, over USD

130,000 of Bitcoin was transfered from one 2-of-3 multisig address

to a second 2-of-3 multisig address. These addresses shared 2 keys in

common, but one of the original keys was replaced with a di�erent

key. Chainalysis
3

labels both the input and output addresses as

being controlled by coinsbank.com. This publicly reveals an internal

restructuring happening at a private company.

In Figure 4 shows the total number and value of multisig trans-

actions that publicly expose con�dential access structure changes

in this way.

Privacy. As shown in Figure 5, the use of multisig provides a

powerful heuristic for identifying the change address in a trans-

action. This is based on the intuition that a change address has

the same access-control policy as the input address. We �nd that

for many transactions, this heuristic allows identifying change ad-

dresses even though previously known heuristics [7] don’t allow

such a determination.

While Gennaro et al. mention the unfortunate privacy-infringing

side-e�ect of multisig [6], we provide the �rst empirical evidence

2
https://blockchain.info/tx/96d95eb77ae1663ee6a6dbcebbbd4fc7d7e49d4784�d9f5e1f3b

e6cd5f3a978

3
https://www.chainalysis.com/

8

coinsbank.com
https://blockchain.info/tx/96d95eb77ae1663ee6a6dbcebbbd4fc7d7e49d4784ffd9f5e1f3be6cd5f3a978
https://blockchain.info/tx/96d95eb77ae1663ee6a6dbcebbbd4fc7d7e49d4784ffd9f5e1f3be6cd5f3a978
https://www.chainalysis.com/


Figure 7: Overview of Dash privacy. First, in the Denominate step, a coin is broken down into valid denominations and the
remainder is returned to the original address. Here, addr2, addr3, and addr4 are the new denominated coins and the leftover
0.99988 Dash is sent back to addr1. Then for each denominated coin, there will be 2–8 rounds of mixing. When a user wishes
to make a PrivateSend, the wallet will use these mixed coins as inputs. The input amount must be a multiple of the smallest
denomination. Additionally another mixed input will be included as a fee. Here, the �rst two inputs provide the value for the
output. The third input is for the fee. This value will generally be 0.0100001 Dash, but if coins of that denomination are not
available, the wallet selects a mixed coin of the smallest denomination it possesses.

for the pervasiveness of this e�ect. Using BlockSci, we �rst applied

previously known heuristics to every transaction in the blockchain,

and found that they succeed in identifying 88,339,789 change ad-

dresses. We then augmented the change address detection by ex-

ploiting the privacy leaks of multisig, and we were able to identify

an additional 22,275,033 change addresses, an increase of over 25%.

Of the new change addresses that we identi�ed, over 8 million were

cases in which the anonymity of non-multisig users was weakened

because they transacted with a party that used multisig (the sce-

nario shown in Figure 5). Over 13 million were cases of multisig

users weakening their own anonymity (i.e., the reverse scenario, in

which a multisig user makes a payment to either a regular address

or a multisig address with a di�erent access structure.)

Security. A surprising, but relatively common motif is for multi-

sig users to switch their money from a multisig address to a regular

address, and then back into a multisig address. We conjecture that

this may happen when users are changing the access control policy

on their wallet, although it is unclear why they transfer their funds

to a regular address in the interim, and not directly to the new

multisig address.

This practice negates some of the security bene�ts of multisig-

natures, as it advertises to an attacker when a high-value wallet

is most vulnerable. To identify this pattern, we looked for trans-

actions in which all of the inputs were from multisig addresses

of the same access structure and there was a single non-multisig

output, which was subsequently sent back to a multisig address.

We restricted our analysis to single output transactions as this is

an indicator of self-churn — i.e., a user shu�ing money among her

own addresses.

In Figure 6, we show the number of transactions per month that

exhibit this pattern of temporarily reducing security of a multisig

address. We also show the total value of the outputs that were

shu�ed in this manner.

3.2 Cluster intersection attack on Dash
Goldfeder et al. recently showed the e�ectiveness of the cluster

intersection attack against Bitcoin mixing [1]. The attack seeks to

link mixed coins to the cluster of wallet addresses that originally

held the coins before mixing. The intuition behind the attack is that

outputs mixed in di�erent transactions are often spent together.

Thus, when these coins are spent together, we trace each one back

to a (potentially large) set of possible address clusters and examine

the intersection of these sets. This will likely result in a unique

cluster. We conclude that the mixed outputs are linked to the wallet

represented by this cluster.

This is a signi�cant weakness of mixing as an anonymity tech-

nique. In this section we provide evidence that Dash, a cryptocur-

rency designed with mixing in mind, is susceptible to this attack.

OverviewofDash. Dash is one of three popular privacy-focused

altcoins (alternative cryptocurrencies), along with Monero and

Zcash. It is the largest of the three by market capitalization as of

August 2017 — over USD 2 billion. It is supported by a handful of

vendors and a few alternative payment processors [13]. Dash is a

fork of Bitcoin with a few key changes. It has a shorter block time

(from 10 to 2.5 minutes) and uses the X11 hashing algorithm. It also

has a two-tiered network, where nodes controlling 1,000 Dash or

more have the option of becoming “Masternodes” — full nodes that

participate in the consensus algorithm, facilitate special types of

transactions, and get a cut of the mining reward for their service.

One of these special types of transactions is PrivateSend.

Dash’s PrivateSend uses CoinJoin-style mixing, whereas Monero

uses mixing based on ring signatures and Zcash provides crypto-

graphic untraceability, which is a stronger (and provable) anonymity

property. Mixing is not mandatory in Dash, but it is integrated into

the default wallet and therefore easy to use. When a user chooses

to start mixing, all her coins (up to a con�gurable limit with a large

default value) are mixed with several rounds of mixing. The number

of rounds is also con�gurable, but the default is 2. These mixed

coins are then available for PrivateSend transactions.

Mix transactions in Dash use power-of-10 denominations. There-

fore coins are broken up into these standard sizes before mixing

is initiated. The mix transactions themselves each have three par-

ticipants, each of whom contributes between 5 and 9 coins to be

mixed. Finally, the PrivateSend transactions spend a set of mixed

power-of-10 denominated outputs. Each of these three types of

transactions has a distinct signature that is readily detectable on the

9



Figure 8: Success rate of the cluster intersection attack on
simulated Dash PrivateSend transactions as a function of
the number of inputs.

Dash blockchain. In particular, the denominations are 1.00001∗ 10k
instead of exactly 10

k
, and thus the values are highly unlikely to

occur by chance. See Figure 7.

Dash and cluster intersection. Two features of the Private-

Send implementation combine to make Dash especially vulnerable

to the cluster intersection attack. First, change addresses are not al-

lowed for these transactions. This means that PrivateSend spenders

must produce “exact change”, which requires combining a large

number of coins. Second, the denominations being powers of 10

(as opposed to, say, powers of 2) further increases the number of

inputs in a typical transaction. For example, to pay 85 Dash, the

sender must combine at least 8+5=13 inputs to avoid losing money.

Figure 14 in the Appendix shows the distribution of the number of

inputs in PrivateSend transactions. Most such transactions have 3

or more inputs; the mean is 40.1 and the median is 12.

Due to the large number of inputs, no auxiliary information is

necessary to carry out the cluster intersection attack on Dash. The

adversary — anyone observing the public blockchain — can infer

that all inputs to a PrivateSend must trace back to the same wallet

cluster. Thus, in the above example of a payment of 85 dash, the

adversary knows that all 13 sets of clusters must have an element

in common. The chance that there is more than one such cluster

gets smaller and smaller as the number of clusters increases.

Of course, auxiliary information can make this attack more pow-

erful. Beyond the risks posed by tracking cookies in [1], the Mas-

ternodes learn the input-output linkage for the mixing rounds that

they facilitate. The privileged status of Masternodes in the Dash

p2p network raises other potential privacy vulnerabilities [14], but

that is not our focus.

Experimental setup. To perform this attack, we used shapeshift.io

(an online service for conversion between cryptocurrencies) to con-

vert Bitcoin into Dash, which we withdrew into a single address.

We used the default Dash wallet to mix 0.55 Dash using the default

parameters, namely 2 rounds of mixing. We obtained 55 separate

mixed outputs, each 0.01 Dash.

0 10 20 30 40 50 60 70 80
Seconds since last update

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f b
lo

ck
s

Figure 9: Distribution of the apparent gap between the most
recent transaction in a block and the block time for Antpool
over a 2-week period in July 2017, suggestive of a 60-second
block update interval.

Next, we re-implemented the PrivateSend algorithm from the

Dash wallet code on top of BlockSci. Given a desired spend amount,

the algorithm selects a set of mixed inputs from the wallet that sum

to this amount. It is shown in Algorithm 1 in the appendix. This

allowed us to simulate our own PrivateSend transactions instead

of actually making them. The latter would have required paying

a transaction fee for each data point; generating the data shown

below would have required spending several hundred USD worth

of Dash in transaction fees, and holding several tens of thousands

of USD worth of Dash.

For each of the simulated PrivateSends, we ran the cluster in-

tersection attack. We consider the attack successful if it results in

a unique cluster of addresses, namely the single address that we

started from.

Results. Figure 8 shows the success rate of the cluster intersec-

tion attack, showing a sharp increase in accuracy as the number of

inputs increases. For transactions with 12 or more inputs (coinci-

dentally, the median number of inputs of PrivateSend transactions

on the blockchain), the attack is always accurate.

In the above experimental setup, we started from a single pre-

mixing address holding Dash. In reality, users may obtain Dash

in multiple installments and hold these coins in their wallet in a

manner that is not easily linkable to each other. Relying on this is

unwise for privacy, as it is a form of security through obscurity;

nevertheless, it is a factor that will signi�cantly hurt the accuracy of

the attack in practice. Evaluating the attack on existing PrivateSend

transactions is challenging due to the lack of ground truth, and is a

topic for future work.

3.3 The block space market
Blockchains are massively replicated, and so most blockchain pro-

tocols limit the size of blocks. In Bitcoin, the limit is currently

1MB per block, which translates to a few thousand transactions per

ten-minute interval. The demand for inclusion in the blockchain

10



0 20 40 60 80 100 120
Delay in seconds

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fe

e 
re

ve
nu

e

Figure 10: Relative loss in transaction fee due to slow block
updates. Error bars represent 95% con�dence intervals.

exceeds this rate, and thus a market for block space has developed.
4

A rational miner should include a set of transactions that maximizes

the revenue of the block, roughly equivalent to �lling blocks with

transactions in decreasing order of transaction fee per byte.

In this analysis, we examine two ways in which miners depart

from this simple revenue-maximizing transaction-selection algo-

rithm. Neither appears to have been widely discussed.

Slow block updates. Mining involves two steps: creating valid

blocks by assembling transactions, and computing the block hash

with di�erent values for the ‘nonce’ �eld. It is only the second step

that is computationally intensive, and has been the source of much

innovation in mining hardware and business models. The �rst step

is computationally trivial. However, to maximize revenue, it must

be repeated as soon as a new transaction arrives. If a miner instead

updates their blocks, say, once a minute, they will leave transaction

fees on the table.

To test if any miners or mining pools have slow block update

times, we compute (for each block) the time delay between the most

recent transaction that was included in the block and when the

block itself was broadcast. Network latency adds some error to our

estimates of when the pool saw a transaction and when the miner

computed the block, but these are on the order of a few seconds,

much smaller than the lag we are interested in. In particular, we

�nd that for Antpool’s blocks, the time delay is roughly uniformly

distributed between 0 and 60 seconds, consistent with a conjecture

that Antpool’s blocks are updated every 60 seconds (Figure 9).

In Figure 10 we show how much a miner or pool would lose

in transaction fees (assuming the transaction fee distribution seen

in late July 2017) for various values of the block update interval.

A miner with a 60-second interval would lose an average of 5%

of transaction-fee revenue in each block. Given Antpool’s share

of hashpower and the exchange rate of BTC, we estimate that

Antpool (and its participants) lost up to USD 90,000 compared to a

hypothetical scenario in which there is no delay in updating blocks.

Appendix B contains similar �gures for other top mining pools.

In most cases the block updates appear to be surprisingly slow. One

4
Bitcoin Cash, on the other hand, appears committed to inde�nitely increasing the

block size limit to keep pace with demand.

0 50 100 150 200 250 300
Satoshi/byte

0

100

200

300

400

500

600

Nu
m

be
r o

f t
ra

ns
ac

tio
ns

Optimal block only
Both blocks
Miner's block only

Figure 11: Example of a BW.COM block (at height 478458)
that includes multiple low-fee transactions.

explanation is that the default values of the update interval for

Stratum and other mining protocols appears to be 60 seconds [15].

With modern mining protocols such as Stratum, miners need to

download only the block headers, and not the contents of blocks,

from pool operators, so a much smaller value of the update interval

should be feasible.

Unexplained inclusion of low-fee transactions. We tested

if there are miners that claim less than the available transaction fees

for reasons other than slow block update times. To test if a block B
is in this category, we create a valid block out of the available trans-

actions in the mempool at the time of the most recent transaction

found in B. The most interesting miner showing this behavior is

BW. We �nd that 12% of BW’s blocks contain transactions that pay

far less transaction fees than the minimum that would be necessary

for inclusion by a revenue-maximizing miner. Figure 11 illustrates

such a block.

We examined a set of 2,148 such suspiciously low-fee transac-

tions in July 2017. We de�ned these as transactions paying sig-

ni�cantly lower fees (5 satoshis/byte or more) than the lowest fee

in the optimal block. When constructing the optimal block we

accounted for the possibility of “child pays for parent" transactions,

and excluded them from the set of suspiciously low-fee transactions.

These are low-fee transactions that may get included if a child trans-

action (i.e. a transaction that spends one of its outputs) pays high

enough fees. We observed several patterns that could potentially

explain the inclusion of low-fee transactions (summarized in Table

7).

• Priority. Bitcoin Core has a notion of ‘priority’ of transac-

tions that includes factors such as the age of the coins being

spent. About a third of the low-fee transactions had a high

priority score, which is potentially why they were included.

Priority is a vestige of the era before the emergence of the

block space market, and aimed to disincentivize transac-

tions that wasted block space; we are aware of no good

reason for miners to reserve space in blocks for them. Yet

this practice appears to persist.

11



Characteristic # transactions

High priority 770

Zero fee 634

Sweep 411

Unexplained 802

Total 2,148

Table 7: Characteristics of low-fee transactions that may ex-
plain their inclusion in blocks (not mutually exclusive).

• Zero-fee transactions not previously seen. About 29 % of

transactions paid no fee, and were transactions that we

had not recorded before their appearance in the block.

This suggests private relationships between the creators

of those transactions and the miners who include them.

Coinbase is one such entity whose transactions are not

always broadcast publicly.

• Sweep transactions. About a �fth of transactions were

“sweep” transactions with over 10 inputs and only one

output. It is not clear why miners would include them de-

spite their low fee per byte; perhaps miners reserve some

space for transactions with su�ciently high absolute fees.

This still leaves about 37% of transactions unexplained by any

of the above patterns.

Overall, the inclusion of these low-fee transactions cost miners

and mining pools about 20 bitcoins during the two-week period of

observation, roughly equivalent to over USD 100,000 in July 2017.

BW.com, in particular, lost 0.065 bitcoins per block, equivalent to a

few hundreds of dollars.

At the time of writing, transaction fees remain a small fraction

(about 20%) of the total mining reward, but the losses due to sub-

optimal block construction will gain in importance if transaction

fees continue to increase.

3.4 Improved estimates of the velocity of
cryptocurrencies

The velocity of money is the frequency with which one unit of

currency is used for purchases in a unit of time. It can provide an

insight into the the extent to which money is used as a medium of

exchange versus a store of value.

In most cases it is not possible to infer the purpose behind a

cryptocurrency transaction from the blockchain. However, an al-

ternative de�nition of the velocity of money is the frequency with

which one unit of currency changes possession in any manner

(whether or not for purchases of goods and services) in a unit of

time. Blockchain analysis may enable estimating the velocity of

cryptocurrencies under this de�nition.

Even under this simpli�ed de�nition, it is challenging to estimate

the velocity of cryptocurrencies. A naive method would be to

compute the total value of transaction outputs in a unit of time

and divide it by the total value of the money supply during that

period. However, multiple addresses may be controlled by the same

entity, and therefore not all transaction outputs represent changes

in possession. Meiklejohn et al. call this “self churn” [7], a term

that we adopt. The impact of self churn is visually obvious in the

Figure 12: Two estimates of the velocity of bitcoins.

graph of total transaction outputs (Figure 12). We would not expect

spikes such as those on January 27, 2016 and April 23, 2017 if the

graph re�ected actual money demand, which would be much more

stable over time.

To minimize the e�ect of self churn, we adopt two heuristics.

First, we eliminate outputs controlled by an address linked to one

of the inputs addresses (as de�ned in Section 2.4, but after remov-

ing the “supercluster" to minimize false positives). This eliminates

change outputs, and entirely eliminates transactions that are de-

tectable as an entity “shu�ing their money around”. We also elimi-

nate outputs that are spent within less than k blocks (we use k = 4).

Manual examination suggests that such transactions are highly

likely to represent self-churn, such as “peeling chains” where a

large output is broken down into a series of smaller outputs in a

sequence of transactions.

The orange line in Figure 12 shows the daily Bitcoin transaction

volume after applying the above two heuristics. With this estimate,

the velocity of Bitcoin works out to 1.4 per month averaged over

the period January 2016–July 2017, compared to 5.4 with the naive

metric. Our revised estimate is not only much lower but also much

more stable over time.

We note several caveats. First, this still likely fails to exclude

some transfers of value between addresses controlled by the same

entity. Without ground truth, it is hard to be certain how good the

estimate is. Second, it doesn’t count transfers of possession that

don’t touch the blockchain. When exchanges, online wallets, and

other intermediaries hold money on behalf of users, payments and

transfers of “bitcoins" might happen even though no actual bitcoins

changed hands. Nevertheless, we believe that the metric can be a

useful proxy for understanding the use of cryptocurrencies, and

possibly for comparing between cryptocurrencies.

Another measurement that may help distinguish between bit-

coins used as a medium of exchange and as a store of value is shown

in Figure 13. At any given time, most transaction outputs (on av-

erage, 86%) have been sitting unspent for over a month. The high

values pre-2013 are attributable to the gambling service SatoshiDice,

an observation also made by Meiklejohn et al. [7] (the drop in May

12



Figure 13: The fraction of bitcoins moved in the previous
month, and the USD-BTC trade volume.

2013 coincides with SatoshiDice blocking U.S. players). Superim-

posing the BTC-USD trade volume shows that many of the spikes

(e.g. April 28, 2013, April 2, 2017) correspond to speculative bubbles.

Overall, the graph suggests that only a small percentage of bitcoins

are used for activities other than investment and speculation, al-

though that fraction has been gradually increasing over the past

year.

4 CONCLUSION
There is a high level of interest in blockchain analysis among de-

velopers, researchers, and students, leading to an unmet need for

e�ective analysis tools. While general-purpose in-memory graph

databases exist [16], a tool customized to blockchain data can take

advantage of its append-only nature as well as provide integrated

high-performance routines for common tasks such as address link-

ing.

BlockSci has already been in use at Princeton as a research and

educational tool. We hope it will be broadly useful, and plan to

maintain it as open-source software.

ACKNOWLEDGMENTS
We are grateful to Lucas Mayer for prototype code, Jason Anas-

tasopoulos, Sarah Meiklejohn, and Dillon Reisman for useful dis-

cussions, and Chainalysis for providing access to their Reactor

tool. This work is supported by NSF grants CNS-1421689 and CNS-

1651938 and an NSF Graduate Research Fellowship under grant

number DGE-1148900.

REFERENCES
[1] S. Goldfeder, H. Kalodner, D. Reisman, and A. Narayanan, “When the cookie

meets the blockchain: Privacy risks of web payments via cryptocurrencies,” arXiv
preprint arXiv:1708.04748, 2017.

[2] A. Miller, M. Möser, K. Lee, and A. Narayanan, “An empirical analysis of linka-

bility in the Monero blockchain,” arXiv preprint arXiv:1704.04299, 2017.

[3] M. Möser and R. Böhme, “The price of anonymity: empirical evidence from a

market for Bitcoin anonymization,” Journal of Cybersecurity, 2017.

[4] ——, “Trends, tips, tolls: A longitudinal study of Bitcoin transaction fees,” in

Financial Cryptography and Data Security, 2nd Workshop on BITCOIN Research,

vol. 8976. Springer, 2015, pp. 19–33.

[5] F. McSherry, M. Isard, and D. G. Murray, “Scalability! But at what COST?” in

HotOS, 2015.

[6] R. Gennaro, S. Goldfeder, and A. Narayanan, “Threshold-optimal DSA/ECDSA

signatures and an application to Bitcoin wallet security,” in International Con-
ference on Applied Cryptography and Network Security. Springer, 2016, pp.

156–174.

[7] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,

and S. Savage, “A �stful of Bitcoins: characterizing payments among men with

no names,” in Proceedings of the 2013 Internet Measurement Conference (IMC).
ACM, 2013, pp. 127–140.

[8] W. Jakob, “Lock-free parallel disjoint set data structure,” https://github.com/

wjakob/dset, 2015.

[9] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an

algorithm,” in Advances in neural information processing systems, 2002, pp. 849–

856.

[10] J. Rubin, “Bitcoin spark framework (btcspark),” https://github.com/JeremyRubin/

BTCSpark.

[11] znort987, “blockparser,” https://github.com/znort987/blockparser.

[12] M. Bartoletti, A. Bracciali, S. Lande, and L. Pompianu, “A general framework for

Bitcoin analytics,” arXiv preprint arXiv:1707.01021, 2017.

[13] “Shop with Dash,” https://www.dash.org/merchants/, 2017.

[14] dnaleor, “Warning: DASH privacy is worse than Bitcoin,” https://steemit.com/

bitcoin/@dnaleor/warning-dash-privacy-is-worse-than-bitcoin, 2016.

[15] N. ODell, “StackExchange: How often do miners update their block

transaction list?” https://bitcoin.stackexchange.com/questions/32892/

how-often-do-miners-update-their-block-transaction-list, 2014.

[16] A. Dubey, G. D. Hill, R. Escriva, and E. G. Sirer, “Weaver: a high-performance,

transactional graph database based on re�nable timestamps,” Proceedings of the
VLDB Endowment, vol. 9, no. 11, pp. 852–863, 2016.

13

https://github.com/wjakob/dset
https://github.com/wjakob/dset
https://github.com/JeremyRubin/BTCSpark
https://github.com/JeremyRubin/BTCSpark
https://github.com/znort987/blockparser
https://www.dash.org/merchants/
https://steemit.com/bitcoin/@dnaleor/warning-dash-privacy-is-worse-than-bitcoin
https://steemit.com/bitcoin/@dnaleor/warning-dash-privacy-is-worse-than-bitcoin
https://bitcoin.stackexchange.com/questions/32892/how-often-do-miners-update-their-block-transaction-list
https://bitcoin.stackexchange.com/questions/32892/how-often-do-miners-update-their-block-transaction-list


A DASH PRIVATESEND ALGORITHM

Algorithm 1 PrivateSend wallet simulation.

Input: desired amount to spend in a PrivateSend

Output: a set of unspent outputs to add up to this value

1: procedure SelectPSInputs(send_amount )
2: T← set of transactions that have at least one

output that is unspent and owned by us

3: T← Sort T by (denomination, transaction hash)

4: selected ← {}
5: for each t ∈ T do:

6: for each output ∈ t .outputs do:

7: if value(selected) + value(output)
8: > send_amount then
9: break

10: end if
11: selected .insert(output)
12: if value(selected) == send_amount then
13: return selected
14: end if
15: end for
16: end for
17: return "Insu�cient Funds"

18: end procedure

B ADDITIONAL FIGURES

Figure 14: Distribution of the number of inputs of Dash Pri-
vateSend transactions

Figure 15: Two estimates of the velocity of litecoins.

0 20 40 60 80
Seconds since last update

0
10
20
30
40

Nu
m

be
r o

f b
lo

ck
s AntPool

0 20 40 60 80
Seconds since last update

0
10
20
30
40

Nu
m

be
r o

f b
lo

ck
s BTC.TOP

0 20 40 60 80
Seconds since last update

0
10
20
30
40

Nu
m

be
r o

f b
lo

ck
s BTC.com

0 20 40 60 80
Seconds since last update

0
10
20
30
40

Nu
m

be
r o

f b
lo

ck
s BTCC Pool

0 20 40 60 80
Seconds since last update

0
10
20
30
40

Nu
m

be
r o

f b
lo

ck
s Bixin

0 20 40 60 80
Seconds since last update

0
10
20
30
40

Nu
m

be
r o

f b
lo

ck
s F2Pool

Figure 16: Distribution of the apparent gap between the
most recent transaction in a block and the block time, for
the top 6 mining pools.

14


	Abstract
	1 Introduction
	2 Design and architecture
	2.1 Recording and importing data
	2.2 Parser
	2.3 Core Blockchain Data
	2.4 BlockSci Analysis Library
	2.5 Programmer interface
	2.6 Performance evaluation

	3 Applications
	3.1 Multisignatures hurt confidentiality
	3.2 Cluster intersection attack on Dash
	3.3 The block space market
	3.4 Improved estimates of the velocity of cryptocurrencies

	4 Conclusion
	Acknowledgments
	References
	A Dash PrivateSend algorithm
	B Additional Figures

